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Abstract

When transformer LLMs generate text autore-
gressively, the only information carried over
from the computation in the current step to the
input of the next step is the newly generated to-
ken. In this paper, we explore a more informa-
tive planning signal containing a set of tokens
likely to appear in the near future. We train
an anticipator head on top of the backbone
transformer and use it to produce the planning
signal. The planning signal increases the com-
putational depth and width of the model, in a
medium separate from its textual output. We
evaluate on a diverse set of generation tasks us-
ing GPT-2 as the baseline and backbone trans-
former.

1 Introduction

During the production or consumption of language,
humans form a tentative plan or belief about the
direction the narrative will take. On the other
hand, autoregressive text generators traditionally
cannot plan ahead (Lu et al., 2022). While decod-
ing strategies like beam search give more room to
consider diversity and future continuations com-
pared to greedy search, they are still limited by the
expressivity and foresight of the underlying LM.
In particular, with a vanilla autoregressive LM, the
only communication carried within the model from
one decoding step to the next is the newly decoded
token. In this paper, we explore a more informative
planning signal which contains the prediction that
certain tokens appear in the near future. To provide
such a signal to the LM, we train an anticipator
head to compute a score for each vocabulary token,
reflecting a confidence about the proximity of the
token’s next appearance. The planning signal can
be viewed as a form of local memory that allows
the LM to condition on its past reasoning about the
development of the text.

As the attachment of the anticipator head and the
insertion of the planning signal into the LM are not
agnostic to the LM architecture, we focus in this pa-
per on the transformer architecture (Vaswani et al.,
2023) due to its prevalence and success in building
LLMs (Radford et al., 2018; Touvron et al., 2023).
Our method trains the anticipator head using a text
corpus as data. From the output of the anticipator,
the highest scoring tokens relative to their global
frequency are embedded, summed with a future
position embedding, and introduced at the next
decoding step into the LM’s first attention layer
for the last context token to attend to. To enable
token-parallel training, we simulate the planning
signal using a tiny model that continuously learns
to mimic the error distribution of the anticipator.

We evaluate our method on perplexity, con-
strained generation and story generation, and long
form question answering.

2 Related Work

Delayed answering Scratchpad (Nye et al.,
2021) and chain-of-thought (CoT) prompting (Wei
et al., 2022) elicit the LM to decode and condition
on intermediate reasoning steps leading to the an-
swer to a multi-step problem. These approaches
have the advantage that they are easy to apply to
a promptable LM. However, they are only applica-
ble to problem solving without concern for token
efficiency, and not to tasks for which there are no
concrete intermediate steps concisely expressible in
natural language, nor to tasks that penalize showing
intermediate steps, such as summarization or story
generation. Conversely, our method is less suitable
for solving the types of problems that Scratchpad
and CoT are intended to solve. Our approach in-
creases the width of computation but in a medium
separate from the model’s textual output, which
is related to the approach by Goyal et al. (2023)



of buffing the context size by appending learnable
pause tokens.

Speculative decoding The proposed anticipator
head is reminiscent of a speculative decoding ap-
proach that trains k heads on top of the backbone
LM to predict the next k tokens in parallel (Stern
et al., 2018). The purpose of speculative decoding
is computational efficiency, while our purpose is
helping the model to plan. Also, we hypothesize
that the quasi-bag-of-words task our anticipator
learns is easier because the exact word order is
not important, which is especially simplifying for
languages with relatively free word order.

Non-autoregressive generation As our method
involves conditioning on an anticipated future con-
text, it is related to a variety of methods that break
the autoregressive barrier, several of which we list
below. Lu et al. (2022) use a heuristic search moti-
vated by A* to guide generations toward those sat-
isfying task-specific constraints. West et al. (2020)
use a forward and a backward LM to contextualize
the input in each direction and then reflect on those
contexts in the reverse directions, useful for tasks
like paraphrasing. Qin et al. (2020) iterate forward
and backward LM passes using gradient descent to
refine a generation to be consistent with a past con-
text and a future constraint. Welleck et al. (2019a)
train a model to learn a generation order follow-
ing a tree structure. Ghazvininejad et al. (2019)
iteratively mask tokens and predict them with bi-
directional attention. Han et al. (2023) decode a
chunk of tokens at a time with diffusion, using the
continuous representation of a simplex whose ver-
tices represent discrete tokens. It is worthwhile to
note that several of the above methods use an LLM
in some innovative way as a black-box, so they can
be used orthogonally to our method, which modi-
fies the transformer architecture in an independent
way.

3 Methods

This section describes our modifications to the
transformer architecture, overviewed in Figure 1,
as well as training and inference procedures.

3.1 Anticipator head

The anticipator head is attached on top of the back-
bone transformer. Like the LM head, the antici-
pator head’s architecture is a feedforward neural
network (FNN) with input dimension equal to the

Figure 1: Model architecture at inference time. The
anticipator head generates a score distribution over the
vocabulary, which is contrasted with the global token
frequencies to prepare a set ofK relevant future tokens.
These tokens are embedded, summed with a future po-
sition embedding, and introduced to the first attention
layer for the last context token to attend to.

transformer’s model dimension and output dimen-
sion equal to the vocabulary size, ending with a
softmax. In fact, if the LM is pre-trained, we ini-
tialize the anticipator head to the LM head. We
train the anticipator to predict a score for each vo-
cabulary token that captures its expected proximity.
The output of the anticipator is used to select K to-
kens to form a planning signal for the transformer,
for a hyperparameter K.

Objective We use a text corpus as training data,
constituting the ground truth of future tokens. For
a training sample, the simplest target score distri-
bution would be a K-hot vector, in which the score
mass is uniform across the next K tokens and zero
elsewhere. However, this creates a sharp contrast
from the Kth to the (K + 1)th token. We address
this by decaying s(d), the score for a token d tokens
ahead of the last context token, such that

s(d) ∝ log(K + 2− d) (1)

for 1 ≤ d ≤ K, and s(d) = 0 for d > K. If a to-
ken appears more than once, its score is the sum of
s(d) over its distances d. We normalize the scores
(i.e. divide by sum) into pseudo-probabilities, in
the sense that they form a probability distribution
but semantically do not represent the probabilities
of events.

Training The anticipator head ends with a soft-
max layer to predict a score distribution:

ŝ(i) ∝ exp(zi/τ) (2)



for token i, where zi is an input to the softmax layer
and τ is the temperature; the scores are normalized
to sum to 1. We make τ learnable so the model may
learn to distribute score mass across the candidates.

We train the anticipator with a combination of
two loss functions. The most straightforward one
is the cross-entropy loss LCE. However, since the
ground truth of future tokens is nearly identical
from one decoding step to the next, there is a signif-
icant risk that with LCE alone, the anticipator will
not learn to drastically reduce the score for newly
decoded tokens, promoting degenerate repetition.
One workaround would be to train only on every
Kth decoding step to eliminate overlap of future
tokens, but at the cost of thinning the training sig-
nal. To teach the anticipator to discriminate when
future tokens have moved into the context while
still learning at every decoding step, we use the
unlikelihood loss (Welleck et al., 2019b) to punish
high scores for recent tokens that do not reappear:

LUL(ŝ, Cn) = −
∑
c∈Cn

log(1− ŝ(c)) (3)

Cn = {xn−K+1, . . . , xn}\
{xn+1, . . . , xn+K},

where n is the position of the last context token and
xi denotes the token at position i. The combined
loss isLCE+λULLUL for a hyperparameter λUL =
1.

We point out that our use of unlikelihood train-
ing is orthogonal to the original usage because they
apply it to the backbone LM. Also, the original
method for training on a text corpus sets Cn to
the previous tokens that do not appear as the sin-
gle next token, whereas our usage more carefully
discerns whether recent tokens are acceptable to
repeat within the context by checking whether they
appear in the next K tokens.

3.2 Planning signal
The anticipator’s score distribution is used to con-
struct a planning signal to the LM.

Contrastive scoring There is a clear problem
with feeding the K tokens with the highest antic-
ipator score into the LM: the planning signal will
be occupied by stop words that are trivial to predict
and offer no substance. To address this, we apply
the concept of contrastive decoding (Li et al., 2023)
to scoring. Rather than the highest scoring tokens,
we are interested in the tokens with the greatest rel-
evance to the current context relative to their usual

usage. Let ptf(i) denote the global term frequency
of token i. We compute the contrastive score as

ŝcv(i) = log ŝ(i)− log ptf(i). (4)

In practice, we set ptf ← max(ptf , εtf) for a hy-
perparameter εtf = 10−5 to avoid the negative
consequences of noisy frequency data for highly
rare words, and to discourage selecting them. The
K tokens with the most positive contrastive score
are selected1, or however many there are if there
are fewer.

Future position embedding Before feeding the
embeddings of the K selected tokens to the trans-
former, we add a future position embedding to in-
form that these tokens are from the future. As
we do not attempt to predict precise positions but
rather a quasi-bag-of-words, the same future po-
sition embedding is shared by all K tokens. The
future position embedding is obtained by applying
a learnable linear transformation to the position
embedding of the last context token. One particular
function that a linear transformation could imple-
ment is PEn → PEn+k for any constant k, where
PEi denotes the sinusoidal positional embedding
proposed by Vaswani et al. (2023) at position i.

First attention layer The embedded K tokens
are passed to the transformer. For computational
feasibility during training, the only attention con-
nections added are of the last context token attend-
ing to the K anticipated tokens at the first attention
layer. A more formal description follows, simpli-
fied to a single attention head. Using the attention
parameters of the first layer (with vector dimension
d), we compute Qc ∈ R1×d as the query vector of
the last context token xn, and Ka,Va ∈ RK×d as
the key and value vectors of the K anticipated to-
kens. Let w ∈ [0, 1]1×K be the contrastive scores
of the K tokens normalized to sum to 1. Then, the
modification to the transformer can be described as
the addition of

(softmax(QcK
>
a /d)�w)Va (5)

to xn’s representation at the following residual con-
nection, where � denotes broadcasted element-
wise product. Further weighting the attention
weights by w allows us to frame the selection of the
K highest scoring tokens as an approximation of
including the full distribution of anticipated tokens.

1There is no reason this K must equal the K used to con-
struct the target score distribution for training the anticipator,
but we set them equal for simplicity.



3.3 Anticipation simulator

The subsections above present a well-defined
model. However, if we wish to train on a sequence
of tokens in parallel as usual with transformer LMs,
we are missing a way to simulate the planning sig-
nal from the anticipator. To do so, we train a tiny
model to simulate the error distribution of the an-
ticipator given the ground truth of future tokens.

For a given target score s ∈ [0, 1], we model the
distribution of anticipator scores ŝ ∈ [0, 1] with a
beta distribution Beta(α, β). For this we learn a
function fAS : [0, 1] → R2

+ with an anticipation
simulator whose architecture is an FNN with input
dimension 1, a single hidden layer of dimension
dAS = 32 with sigmoid activation, and output di-
mension 2 followed by a softplus function to ensure
positivity. We train on previous samples of (target
score, anticipator score) with negative likelihood
loss. We use a high learning rate so that the simula-
tor forgets old behavior of the anticipator. Then, for
token-parallel training, we apply the anticipation
simulator to each target score to sample a score,
and use these scores to construct a planning signal
for the transformer.

4 Experimental Setup

In our experiments, we use GPT-2 (Radford et al.,
2019) as the backbone transformer, a random 100
MB subset of C4 (Raffel et al., 2019) as training
data, andK = 50. We compare our method against
the baseline GPT-2. As we intend our method to
improve on a general-purpose transformer LLM,
we consider a diverse set of generation tasks.

We also compare against three ablations: discard
anticipator head (\ANTICIPATOR); freeze back-
bone LM (\FINE-TUNE); discard anticipator head
and freeze backbone LM (BASE+TRAIN). Our
method introduces potential benefits through (1)
the planning signal and (2) fine-tuning the LM
to produce a hidden representation conducive to-
ward the anticipator head predicting a future con-
text. The absence of each is examined through
\ANTICIPATOR and \FINE-TUNE, and the absence
of both is examined through BASE+TRAIN.

4.1 Accuracy of anticipator and LM

Before looking at real tasks, we first measure the
“accuracy” of the anticipator and the LM. For the
anticipator, we report the (average) KL divergence
DKL(P‖Q), where P is the ground truth score
distribution (as defined in Section 3.1) and Q is the

anticipator’s score distribution. For the LM, we
report perplexity. We evaluate both metrics on a
held-out random 1 MB subset of C4.

Since the hidden state from the transformer is
passed into both the LM head and the anticipator
head, the planning signal may only be helpful if
the predicted token becomes the last context to-
ken. However, due to teacher forcing, inconsis-
tency would arise if the last context token is over-
ridden by the ground truth, so measuring perplexity
naively for our method would be unfair. Thus, we
modify our architecture from that used during gen-
eration. Consider that we are predicting xn+1 from
x[1,n]. We run the model with context x[1,n) and a
single anticipated token equal to xn. We use the
anticipator output at position n− 1 to construct a
planning signal. We run the model again, with con-
text x[1,n] and the planning signal. The purpose of
including the single anticipated token xn in the first
run is to make the model likely to predict x̂n = xn
without xn being part of the context (if it was in the
context, there would be a mismatch with training),
but even if x̂n 6= xn, we apply teacher forcing de-
spite this causing inconsistency with the planning
signal.

4.2 Constrained generation / story generation
RocStories We evaluate story generation with
the RocStories dataset (Mostafazadeh et al., 2016).
We measure perplexity from GPT-3, and coherence
and quality evaluated by humans.

COMMONGEN We evaluate constrained gener-
ation with the COMMONGEN dataset (Lin et al.,
2020), which asks a model to write a sentence
that includes a given set of words. As in Lu et al.
(2022), we evaluate the automatic metrics of cover-
age, ROUGE-L, and perplexity from GPT-3, and
the human metrics of coverage, quality, and plausi-
bility.

4.3 Long form question answering
We evaluate long form question answering with the
ELI5 dataset (Fan et al., 2019). We use a BART-
based retriever2. We measure ROUGE-L with the
reference.

5 Results

We expect our method to improve on the baseline.
We expect the ablations to come between the base-
line and our method.

2https://huggingface.co/yjernite/bart eli5



Method DKL

Ours
\FINE-TUNE

Table 1: KL divergence DKL(P‖Q), where P is the
ground truth score distribution and Q is the anticipa-
tor’s score distribution.

Method Perplexity
Ours

\ANTICIPATOR

\FINE-TUNE

BASE+TRAIN

Table 2: Perplexity.

5.1 Accuracy of anticipator and LM

Table 1 shows the results for KL divergence of
anticipated tokens. Table 2 shows the results for
perplexity.

5.2 Constrained generation / story generation

Table 3 shows the results for RocStories. Table 4
shows the results for COMMONGEN.

5.3 Long form question answering

Table 5 shows the results for ELI5.

6 Discussion

Tokenless anticipation A potential generaliza-
tion of our method is to allow the planning signal
to be an arbitrary vector rather than our engineered
feature. While the former would grant more ex-
pressivity, the latter grants (1) efficiency – token-
parallel training is possible because we can learn
to simulate the error distribution of the anticipator
given the ground truth of future tokens, (2) inter-
pretability – the predictions of the anticipator may
reveal the intentions of the model before they are re-
alized, and (3) manipulability – we can manipulate
the planning signal for the purpose of constrained
decoding.

Auto Human
Method PPL Coherence Quality

Ours
\ANTICIPATOR

\FINE-TUNE

BASE+TRAIN

Table 3: RocStories. Perplexity evaluated by GPT-3.

Quality-compute tradeoff in 1 model It is de-
sirable to have a single model that is optionally
able to spend more time computing in exchange
for higher quality outputs, generalizing between
multiple models of different scale. This ability is
akin to the way a human can adaptively either make
snap decisions or ponder deeply. An iterative appli-
cation of the method presented here is a possible
implementation of such a model, where we can
repeatedly pass the model’s anticipations back to
the model for it to continue refining them.

Hybrid bidirectional/causal attention Al-
though bidirectional attention leverages context
more effectively than causal attention, transformer
LMs with token-parallel training do not permit
bidirectional attention due to illegal lookahead.
For this reason, even during inference, when
context tokens attending to future context tokens
would not be cheating, LMs do not do so because
such attention interactions are out of training
distribution. Our anticipation objective may be a
preliminary approach at bridging the gap between
what can be leveraged at inference and what is
leveraged at training. Since each token attends to
a set of anticipated future tokens during training,
attending to future tokens is in-distribution to some
degree, which means the true future context tokens
can be leveraged at inference.

7 Practical Limitations

The practical limitations are related to compute.
Since training language models is expensive, we
may not be able to scale our experiments up to the
largest models.
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